Pho85p-Pho80p phosphorylation of yeast Pah1p phosphatidate phosphatase regulates its activity, location, abundance, and function in lipid metabolism.
نویسندگان
چکیده
The yeast Pah1p phosphatidate phosphatase, which catalyzes the penultimate step in the synthesis of triacylglycerol and plays a role in the transcriptional regulation of phospholipid synthesis genes, is a cytosolic enzyme that associates with the nuclear/endoplasmic reticulum membrane to catalyze the dephosphorylation of phosphatidate to yield diacylglycerol. Pah1p is phosphorylated on seven (Ser-110, Ser-114, Ser-168, Ser-602, Thr-723, Ser-744, and Ser-748) sites that are targets for proline-directed protein kinases. In this work, we showed that the seven sites are phosphorylated by Pho85p-Pho80p, a protein kinase-cyclin complex known to regulate a variety of cellular processes. The phosphorylation of recombinant Pah1p was time- and dose-dependent and dependent on the concentrations of ATP (3.7 μm) and Pah1p (0.25 μm). Phosphorylation reduced (6-fold) the catalytic efficiency (V(max)/K(m)) of Pah1p and reduced (3-fold) its interaction (K(d)) with liposomes. Alanine mutations of the seven sites ablated the inhibitory effect that Pho85p-Pho80p had on Pah1p activity and on the interaction with liposomes. Analysis of pho85Δ mutant cells, phosphate-starved wild type cells, and cells expressing phosphorylation-deficient forms of Pah1p indicated that loss of Pho85p-Pho80p phosphorylation reduced Pah1p abundance. In contrast, lack of Nem1p-Spo7p, the phosphatase complex that dephosphorylates Pah1p at the nuclear/endoplasmic reticulum membrane, stabilized Pah1p abundance. Although loss of phosphorylation caused a decrease in abundance, a greater amount of Pah1p was associated with membranes when compared with phosphorylated enzyme, and the loss of phosphorylation allowed bypass of the Nem1p-Spo7p requirement for Pah1p function in the synthesis of triacylglycerol.
منابع مشابه
Cross-talk phosphorylations by protein kinase C and Pho85p-Pho80p protein kinase regulate Pah1p phosphatidate phosphatase abundance in Saccharomyces cerevisiae.
Yeast Pah1p is the phosphatidate phosphatase that catalyzes the penultimate step in triacylglycerol synthesis and plays a role in the transcriptional regulation of phospholipid synthesis genes. The enzyme is multiply phosphorylated, some of which is mediated by Pho85p-Pho80p, Cdc28p-cyclin B, and protein kinase A. Here, we showed that Pah1p is a bona fide substrate of protein kinase C; the phos...
متن کاملProtein kinase A-mediated phosphorylation of Pah1p phosphatidate phosphatase functions in conjunction with the Pho85p-Pho80p and Cdc28p-cyclin B kinases to regulate lipid synthesis in yeast.
Pah1p, which functions as phosphatidate phosphatase (PAP) in the yeast Saccharomyces cerevisiae, plays a crucial role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate and its product diacylglycerol. The diacylglycerol produced by PAP is used for the synthesis of triacylglycerol as well as for the synthesis of phospholipids via the Kennedy pathway. Pah1...
متن کاملPhosphatidate phosphatase, a key regulator of lipid homeostasis.
Yeast Pah1p phosphatidate phosphatase (PAP) catalyzes the penultimate step in the synthesis of triacylglycerol. PAP plays a crucial role in lipid homeostasis by controlling the relative proportions of its substrate phosphatidate and its product diacylglycerol. The cellular amounts of these lipid intermediates influence the synthesis of triacylglycerol and the pathways by which membrane phosphol...
متن کاملYeast Pah1p phosphatidate phosphatase is regulated by proteasome-mediated degradation.
Yeast PAH1-encoded phosphatidate phosphatase is the enzyme responsible for the production of the diacylglycerol used for the synthesis of triacylglycerol that accumulates in the stationary phase of growth. Paradoxically, the growth phase-mediated inductions of PAH1 and phosphatidate phosphatase activity do not correlate with the amount of Pah1p; enzyme abundance declined in a growth phase-depen...
متن کاملA phosphorylation-regulated amphipathic helix controls the membrane translocation and function of the yeast phosphatidate phosphatase.
Regulation of membrane lipid composition is crucial for many aspects of cell growth and development. Lipins, a novel family of phosphatidate (PA) phosphatases that generate diacylglycerol (DAG) from PA, are emerging as essential regulators of fat metabolism, adipogenesis, and organelle biogenesis. The mechanisms that govern lipin translocation onto membranes are largely unknown. Here we show th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 14 شماره
صفحات -
تاریخ انتشار 2012